Recall RA $\mathbb{E}_{\mathbb{Q}}$ is the coset en. rel. of $\mathbb{Q} \leq \mathbb{R}$. It is also the orbit eq. et. of the translation action $\mathbb{Q} 卫 \mathbb{R}: x \mathbb{E}_{\mathbb{Q}} y: \Leftrightarrow x-y \in \mathbb{Q} \Leftrightarrow x=y+q$ to some $q \in \mathbb{Q}$.

Theorem. $\mathbb{E}_{\mathbb{Q}}$ is λ-ergodic.
Proof. Suppose towards a wotrachiction the there is an $\mathbb{E}_{\text {Q-ivvariact }}$ meas. set A such tut both A and A^{c} are positive measure. Nate that invariance means bht $q+A=A$ for all $q \in \mathbb{D}$. By the $9 g^{\circ} \%$, let J be a bid interval w. th $\operatorname{Mh}(J)>0$ whose giro is A^{C}.
By the "arbitrarily sal" 99%, there is an interval I whose 99% is A and sit. $0<t h(I)<1 \%$ of $\ln (J)=: \varepsilon$.

Note W_{A} for an $q \in \mathbb{Q}, q+I$ is $9 g^{\circ} \%, q+A=A$, because Lebesgue measure is fraslation invariant.
It is enough ho cover 98% of J by pairwise clisjoint ration nat translates of I, bend then J vould by $0.98 \cdot 9 g^{F} \%>96 \%$ A, codraclicting at J is $g g^{9} \%_{0} A_{1}^{c}$
To this cad, let $n:=T \ln (J) / \ln (I)]$ all tale disjoint rational translates of $I: q_{0}+I<q_{1}+I<\ldots<q_{k}+I$ so that each gap is < E/n, except possibly the gap between $\eta_{k}+I$ al the right endpoint of J, high is $\leq 1^{i} \%$ af $\operatorname{lh}(J)$. ais is possibly h_{y} the density of \mathbb{U} in \mathbb{R}. Then we've indeed covered
all J except for $\frac{\varepsilon}{n} \cdot(k+1)+\varepsilon \leqslant \frac{\varepsilon}{n} \cdot n+\varepsilon=2 \varepsilon$ mach measure. But 2ε in 2% of J, $n_{\text {so }}$ verve covered 98% of I with lisjoint rational translates of I.
For an en. rel. E on X, the E-saturation of a set $A \subseteq X$ is the set $[A]_{E}:=\bigcup_{a \in A}[a]_{E}=\left\{x \in X: \exists a \in A\right.$ with $\left.a E_{x}\right\}$.
For $\mathbb{E}_{\mathbb{Q}}$, his has a nile form: Gr $A \subseteq \mathbb{R},[A]_{\mathbb{E}_{\mathbb{Q}}}=\bigcup_{q \in \mathbb{Q}}(q+A)$. S_{0} if A is λ. wesuruble, so $i s[A\}_{\mathbb{E}_{a}}$.
Grollary. $\left.\mathbb{E}_{\mathbb{Q}}\right|_{A}:=\left\{(x, y) \in A^{2}: \times \mathbb{E}_{\mathbb{Q}}\right\}$ is λ - ergodic for each λ-measurable now-uall set $A \leq \mathbb{R}$.
Proof. If $A=B \cup C$, there both B, C are $\left.\mathbb{E}_{\mathbb{Q}}\right|_{A}$-increriant al neaswachle non-unll, then $[B]_{\mathbb{E}_{\mathbb{Q}}}$ al $[C]_{\mathbb{E}_{\mathbb{A}}}$ are still disjoint, and also' measurable $\mathbb{E}_{\mathbb{Q}}$ al non -nad), and $\mathbb{E}_{\mathbb{Q}}$-invariant, contradicting the ecgoclicidy of \mathbb{E} ar.
Weill show in the next HW that every teacsuersal of an eegohic eq. rel. is non-mensurable.

Haar Measures. A topological soup is a group G cynipped with a topology Wt makes umltiplication $\because G^{2} \rightarrow G$ and the inverse function ()$^{-1}: G \rightarrow C$ coctivuocs.

Also, a top space X is called
(i) Hausdorff if tor an distinct $x, y \in X \exists$ disjoint open $U, V \leq X$ s.t. $x \in U$ al $y \in V$

(ii) focally soypact if every pt $x \in X$ achaits a wongact neichbourhood k (i.e. $x \in \operatorname{int}^{t}(k)$ al k is oupact).

Excples. - C|bl discrete gloups

- $\mathbb{R}^{d}, d<a$
 bincry addition.
- $\mathbb{R}^{*}:=\mathbb{R} \backslash\{0\}$
wh
$0 \mathbb{C}^{\alpha}:=\mathbb{C} \backslash$ S0\} wite。
- $G L_{n}(\mathbb{R}):=$ the sp of icuectible real wectrices.
$0 S^{\prime} \subseteq \mathbb{C}$ is a coupact Hanshortf gp. $\bigcirc \cong \mathbb{R} / \mathbb{Z}$.
Haar's theorem. Every locally conpact Hausdorft top. groap admits Bocel a unique (up to scaling) left (or right) teanslationinvariactev mocasure that is positive on woneapty opeas and tincity on conpacts. (Being positive on open sets is antomatic if C is $2^{\text {nd }}$ ctbl.) In particalar, if h is compact then it admits a unique lett (or right) translation invariant poob neasuce. this weasme is call the/a Haar weasure.

Thus, the lebesgue measuce is a Has ne asorer on \mathbb{R}^{d}. The Berconlli $\left(\frac{1}{2}\right)$ is the Hake wasure on $\left(\mathbb{Z}(2 \mathbb{Z})^{N}\right.$.
The connting reashre is a Haar neascre on cfbl cliscrete ycolps.

Bored measseres on \mathbb{R}. We keon ht lebesgue neashre or \mathbb{R} is the unique (up to scaling) transletion-invariant vasure on \mathbb{R} aroang
all Boned measures on \mathbb{R} that we finite or 1 dd sets.
Wed like to understand all Basel measures on \mathbb{R} had we finite on bed sets, e.g. So or $\frac{1}{3} \delta_{0}+\frac{2}{3} \delta_{1}$.

Let μ be such a measure on \mathbb{R}. Consider $f_{\mu}: \mathbb{R} \rightarrow \mathbb{R}$ defined $h_{3} x \mapsto\left\{\begin{array}{ll}\mu((0, x]) & \text { if } x \geqslant 0 \\ -\mu((x, 0]) & \text { if } x<0\end{array}\right.$, so $f_{\mu}(0)=\mu((0,0])=\mu(0)$
Note hat
(i) f_{μ} is increasing (non-strictl l_{b}) by the uraodonicity of μ.
(ii) f_{μ} is right-continuous, ie. whenever $x_{n}>x_{n \rightarrow \infty}, f_{\mu}\left(x_{n}\right) \varliminf_{n \rightarrow \infty} f(x)$. Proof. Let $x \geqslant 0$ aral leif $x_{n} \gg x$.

Then $f_{\mu}(x)=\mu((0, x])=\lim \mu\left(\left(0, x_{n}\right]\right)=\operatorname{lin} f_{j}\left(x_{n}\right)$ Decare $(0, x]=\prod_{n}\left(0, x_{n}\right]{ }^{n}$ and $\mu\left(\left(0, x_{0} J\right)^{n}<\infty\right.$.
Let $x<0$ al let $\left.x_{n}\right\rangle x$. Then $f_{\mu}(x)=-\mu((x, 0])$

$$
\begin{aligned}
& =\lim _{h}-\mu\left(\left(x_{n}, 0\right]\right)=\lim _{n} t_{\rho}\left(x_{n}\right) \text { bean } \\
& (x, 0]=\bigcup_{n}\left(x_{n}, 0\right] .
\end{aligned}
$$

(iii) $\mu((a, b])=f_{\mu}(b)-f_{\mu}(a)$.

Remark. When μ is finite, the faction $F_{\mu}: \mathbb{R} \rightarrow \mathbb{R}$

$$
x \mapsto \mu((-\infty, x])
$$

also satisfies (i)-(iï) and is called in probability the disfribation of μ.

Wat we have drown is the first pact of the following

Theorem. (a) For each Bonel measue or finite on bdd sets there is a waigue (up to a constant) function $f_{\mu}: \mathbb{R} \rightarrow \mathbb{R}$ uith $\mu((a, b])=f_{r}(b)-f_{\mu}(a), \forall a<b \in \mathbb{R}$ Such a funtion is cutomatically increasing and right-continnous. It is also bdd if $\mu<\infty$.
(b) Conversely, for any increasing right-cantinnous $f: \mathbb{R} \rightarrow \mathbb{R}$ thore is a unique Borel meashre μ_{f} with $\mu_{f}((a, b])=f(b)-f(a)$. (In particalar, $f_{f_{f}}-f$ is constact.)

Pcoot. (a) Me already proved it excest of whignesem, but if f and g are two sach fancofions, then for any $x \geqslant 0$, we have $f(x)-f(0)=\mu((0, x])^{\prime}=g(x)-g(\theta)$, so

$$
f(x)-g(x)=f(0)-g(0) \quad \forall x \geq 0 \text {. Sinilorly for } x<0 \text {, so f.g }
$$ i) cowstact.

(b) Let A be the algebra yerated b, these half-iudervals $(a, b]$. Then eah $A \in A$ is a fimide disjoint union of (potentialls uabdd) half-intervals. Define $f(\pm w):=\lim _{x \rightarrow \pm \infty} f(x)$.
Then we define g_{f} on $A b b_{y}$
deckaring $\mu_{f}((a, b]):=f(b)-f(a)$. By the sane proof as tor Lebesgue weasure, his is a well-defined finidely acditive cuearure on A. In particalar, it is ctbly-supadditice.

We shan $10 t$ if is also ctbly-sabachditive. We ran the sane corppactuen argumect as for Lobesgue weasure. Again, the merin poist to shan is the if $(a, b]=\bigcup_{n}\left(a_{n}, b_{n}\right]_{1}$ there $a, b \in \mathbb{R}$, then

$$
\mu_{f}((a, b]) \leqslant \sum_{n} \mu_{f}\left(\left(a_{n}, b_{n}\right]\right) .
$$

